Grenaillage vibratoire

Grenaillage vibratoire

Promising Performance 01

Kumar Balan étudie l'efficacité du décapage vibratoire, sa viabilité financière et sa portée potentielle sur le marché. Son article couvre tous ces aspects grâce aux données fournies par Vibra Finish.

Dans le numéro d'hiver 2018 de The Shot Peener, nous avons abordé deux techniques de grenaillage non conventionnelles ; l'une d'entre elles était le grenaillage vibratoire. Outre l'état de surface supérieur, nous avons appris que la couche de compression était plus profonde avec le grenaillage vibratoire par rapport au grenaillage conventionnel. Le processus lui-même était très différent du grenaillage conventionnel en termes de durée de vie du support, de production de poussière et de coûts des services publics. Nous en avons conclu que cette technique de génération de contraintes de compression résiduelles méritait d'être explorée plus avant. Les résultats sont discutés ici.

Vibra Finish, une société basée à Mississauga, Ontario (Canada), a mené de nombreuses études pour valider les faits établis et définir clairement les limites de ce procédé de grenaillage. Elle a tenté d'identifier les composants, tant industriels que domestiques, qui exigent et peuvent bénéficier d'une combinaison de résistance à la fatigue et d'une finition de surface supérieure, le tout en une seule étape.

Lors de l'examen d'un nouveau procédé, en particulier d'un procédé qui simule une technique établie mais avec des améliorations notables, le scepticisme est courant. Les doutes portent notamment sur l'efficacité technique du procédé, sa viabilité financière et sa portée potentielle sur le marché. Notre discussion couvrira tous ces aspects grâce aux données fournies par Vibra Finish. Étant donné que Vibra Finish utilise également des machines de grenaillage de précontrainte conventionnelles, notre discussion est enrichie par la comparaison des deux techniques sous des variables de processus identiques.

Contexte

Vibratory finishing is a primary process in its own right and sometimes it is a supplementary process used to polish a shot-peened surface. As a secondary operation, it can eliminate surface roughness created during peening. Surface roughness, greater than a certain application dependent value, can have a detrimental effect on the fatigue life of the component. As we know, most specifications limit material removal in post-peening finishing to 10% of the ‘A” intensity value. Vibratory finishing could be controlled to stay well within this tolerance. Vibratory finishing is also used for deburring, burnishing, descaling and is ideal for finishing parts prior to painting, plating, heat treating, anodizing or simply to achieve an excellent final finish.

Vibratory finishing is categorized as a “mass-finishing” process, and when designed properly, will result in a batch of parts that is treated with uniformity and consistency. The process is not reliant on operator skill unlike certain other techniques such as buffing, filing, belting, etc. Instead, a batch of parts are loaded in bulk into a tub or continuously fed to a vibratory machine for inline operation. The tub is filled with finishing media and suitable compound(s) that when combined act as thousands of small filing surfaces scrubbing the parts. The compound assists the cleaning/finishing action of the media (usually made from ceramic). The choice of compound will depend on the material to be treated, the desired surface finish, and the individual application and process requirements. Additives in the compound could serve other purposes such as alkaline cleaning, acidic burnishing, washing and rust inhibition.

Comme tout autre procédé, la finition vibratoire comporte des variables contrôlables qui modifient la qualité de la finition. Deux des principaux facteurs sont l'amplitude et la fréquence des vibrations. Compte tenu des avantages de ce procédé, il est naturel d'étendre la gamme d'applications de la finition vibratoire afin d'obtenir un produit grenaillé et fini en une seule étape.

Recherche antérieure

En 2016-17, le Dr Hongyan Miao et le Prof. Martin Levesque de Polytechnique Montréal ont étudié les améliorations de la durée de vie en fatigue d'un certain type d'alliage en utilisant le grenaillage conventionnel et le grenaillage de précontrainte. Les résultats de cet essai ont été suffisamment encourageants pour que des tests supplémentaires soient effectués. Les détails de ces essais sont les suivants :

  • Conventional shot peening was carried out in an Automated air type machine with a V2″ diameter nozzle propelling Z425 ceramic bead on the component. The target intensity was 8A, achieved at an air pressure of 20 PSI and media flow of 10 lb./minute. The part was fixtured on a rotary table.
  • Vibratory peening (this term is used to signify the sole purpose of this operation-peening) was performed in a batch-type tub filled with AISI Type 1018 Carbon Steel balls with diameters 1/8″, 3/16″ and Vi”, adding up to almost a ton in weight. The target intensity remained unchanged from 8A as in the conventional peening machine.
  • Il est intéressant de noter le mélange de tailles de médias dans ce processus par rapport au grenaillage de précontrainte conventionnel où l'on s'appuie sur une taille de média constante, au point d'utiliser des tamis classificateurs pour maintenir la même taille dans la machine. En raison de la nature exclusive de ce procédé, il n'est pas possible d'obtenir plus de détails sur l'utilisation de médias de tailles différentes. Une explication raisonnable serait de considérer le mécanisme de mouvement des médias dans une cuve de type discontinu, et l'interaction d'une taille avec une autre, comme sur une table de billard. Cette méthode est comparée à celle du grenaillage de précontrainte conventionnel, dans lequel un flux continu d'abrasifs frappe la cible.
  • Les deux types de supports (billes en céramique et en acier au carbone) étaient d'une dureté comparable, de l'ordre de 60 HRC.
  • In contrast to conventional shot peening where the part spinning on the table was targeted by the abrasive, the part in the vibratory tub was positioned 10″ below the ball bed surface with constant contact of the carbon steel balls.

L'équipe a tracé des courbes de saturation en utilisant des ensembles de données obtenues à partir des deux techniques de grenaillage et, avec leurs paramètres de processus distincts, ils sont arrivés à une intensité de 8,3 A et 8,6 A avec le grenaillage de précontrainte et le grenaillage vibratoire respectivement. Les mesures de contraintes résiduelles effectuées sur les pièces testées à l'aide de la diffraction des rayons X ont donné des résultats intéressants. Le grenaillage de précontrainte a produit une surface plus importante et une contrainte résiduelle de compression maximale (-212 MPa et -297 MPA respectivement), par rapport aux -148 MPa et -225 MPa produits par le grenaillage vibratoire. Cependant, la différence se situe au niveau de la profondeur de compression. Le grenaillage de précontrainte vibratoire produit -50 MPa à 520 microns sous la surface, alors qu'avec le grenaillage de précontrainte, la même contrainte résiduelle, -50 MPa, ne s'enfonce que de 340 microns dans la surface. En pratique, si nous sommes en mesure de modifier les paramètres du processus de grenaillage vibratoire de manière à ce qu'il génère la même amplitude de contrainte de compression que le grenaillage de précontrainte, nous pouvons nous attendre à ce que cette contrainte s'étende sur une plus grande profondeur qu'avec le grenaillage de précontrainte.

Les résultats de la rugosité de surface étaient conformes aux attentes. L'étude a comparé la rugosité de la surface de l'échantillon tel qu'il a été usiné, grenaillé et après le grenaillage vibratoire. La rugosité a été testée sur trois échantillons, à trois endroits différents, et la tendance était la même dans tous les cas. L'un de ces résultats est présenté ci-dessous par souci de concision.

Promising Performance 02

Les essais de fatigue réalisés dans le cadre de cette étude ont donné des durées de vie moyennes similaires pour les deux procédés. Toutefois, ils ont constaté que les valeurs obtenues par grenaillage de précontrainte présentaient un écart type nettement inférieur (variation minimale). L'étude a conclu qu'au lieu de comparer des valeurs d'intensité Almen similaires, les études futures devraient comparer les mesures de la durée de vie en fatigue pour des profils de contraintes résiduelles similaires, à différents niveaux de rugosité. En fin de compte, la mesure de tous ces processus est basée sur l'ampleur de l'impact sur la durée de vie en fatigue, de préférence dans le sens positif.

Composants commerciaux et grenaillage vibratoire

Encouraged by the results of the previous tests, Vibra Finish continued with comparative tests on more conventional components – a turbine blade and an automotive transmission gear. The tests were to study the following:

  • Comparer les effets du grenaillage de précontrainte et du grenaillage vibratoire sur (a) des géométries ouvertes et (b) des géométries relativement fermées afin de connaître les limites que présentent certains types de pièces pour ce procédé.
  • Rugosité de la surface
  • Contrainte résiduelle et nature des courbes (relâchement de la contrainte de compression mesurée dans la profondeur de la pièce)

The conventional shot peening process was carried out in an automated airblast machine under the following process parameters: Target intensity: 10 to 12A and 100% coverage. This was achieved using SI 10 regular hardness steel shot propelled at 30 PSI by a Vi” diameter nozzle at a stand-off distance of 8″ for a time cycle of 30 seconds.

Le grenaillage vibratoire a été réalisé avec des billes d'acier de 3 mm de diamètre, dans une cuve de type discontinu, pour un cycle total de 10 minutes. Deux ensembles de données, l'un pour la rugosité de la surface et l'autre pour la contrainte résiduelle (par diffraction des rayons X) ont été analysés.

Données de rugosité de surface :

Promising Performance 03

Les résultats de l'état de surface montrent une tendance intéressante pour un composant à géométrie relativement fermée (engrenage) par rapport à l'aube dont les surfaces sont larges et ouvertes. La section du pied de l'engrenage, qui est la zone de concentration maximale des contraintes, est la région la plus importante pour les mesures. Dans cette région, le composant grenaillé présente un état de surface beaucoup plus rugueux qu'un composant vibro-grenaillé identique. Toutes les autres régions de l'engrenage, telles que la face d'entraînement, la face de côte et l'extrémité, présentaient des valeurs de rugosité de surface comparables dans les deux procédés. La géométrie de la dent de l'engrenage, l'accès au média et la taille du média sont autant de facteurs qui ont pu contribuer à la valeur finale de la rugosité lors du grenaillage vibratoire.

Though S110 was ideally suited to peen the smallest radius of the gear tooth without causing coverage issues, the surface roughness ended up much higher than with vibratory peening. However, we have to consider the fact that in order to achieve the same intensity (8 to 12A), the S-110 would’ve had to penetrate deeper than the 3 mm balls in vibratory peening, resulting in a rough surface profile.

Une étude du profil des contraintes résiduelles a permis de mieux comprendre les caractéristiques des deux procédés pour induire une compression dans les pièces.

Promising Performance 04
Engrenages

The residual stress curve for this component is different from the classic “J” hook curve that was expected before the results were obtained. Also, this is a carburized component that may not necessarily show high values of residual stress when shot peened with SI 10 size media to a relatively lower intensity range (8 to 12 A). Though the residual stress at the surface of the shot peened sample is greater than that achieved with vibratory peening, the dissipation (or loss) of residual stress towards the depth of the material is much more controlled with the vibratory peened sample. Vibratory peening did record a seemingly anomalous reading when measured at 0.0008″ depth, registering a steep 33% drop from -79 ksi to -53 ksi before continuing with a controlled and gradual decline at deeper levels into the sample.

Une question évidente qui reste à évaluer est de savoir si l'état de surface (rugosité) a été la cause de cette chute brutale de la contrainte résiduelle dans l'échantillon grenaillé, surtout si l'on considère la surface plus lisse après le grenaillage vibratoire. La cémentation de l'engrenage peut également avoir conduit à l'ampleur relativement plus faible de la contrainte résiduelle en utilisant les deux types de techniques de grenaillage.

Lame

A blade from a turbine wheel was chosen for its open geometry. As it turned out, the resultant residual stress followed the all-familiar J-hook pattern. Surprisingly, the compressive stress generated at the surface was greater with vibratory peening when compared to the shot peened sample. Once again, the open geometry of the part and material properties (softer than the gear) likely caused this result. An interesting observation is to be made at 0.0021″ depth where both processes register the maximum compression. Assuming the shot-peened part had developed a rough profile after peening, if one were to polish it by 10% of the ‘A” intensity value, i.e., 0.0011″, we will end up with a higher residual stress value (about -140 ksi) at the surface of the shot peened part. At this depth, the vibra-peened part will have a residual stress of-113 ksi without the need to be polished.

Promising Performance 05

  • La chute de la contrainte résiduelle à mesure que l'on s'enfonce dans le composant a été radicale avec la pièce grenaillée et a suivi une diminution progressive avec le composant vibré. Il s'agit d'une caractéristique positive de ce dernier procédé.
  • Dans les deux cas, il semble que la géométrie de la pièce ait joué un rôle important dans l'augmentation de l'ampleur des contraintes résiduelles.

Conclusions et étapes futures

Le grenaillage vibratoire est certainement très prometteur car il permet de combiner les deux caractéristiques essentielles de la finition de surface - profil lisse et contrainte de compression - en une seule étape. En outre, dans les deux exemples, on a constaté une dissipation graduelle et régulière de cette contrainte au fur et à mesure que l'on s'enfonce dans le matériau, ce qui prouve que le processus est contrôlable. Les prochaines étapes consistent à étudier les coûts d'exploitation des deux procédés afin d'en évaluer la viabilité financière. Le grenaillage de précontrainte vibratoire ne possède pas le même modèle consommable que celui que nous connaissons tous dans le grenaillage de précontrainte conventionnel. Il en va de même pour les coûts d'investissement liés à l'acquisition d'une machine de grenaillage de précontrainte conventionnelle.

Le grenaillage vibratoire n'est pas encore régi par une spécification. Il pourrait s'agir de la prochaine étape pour accroître l'adoption de ce procédé dans des secteurs connus. Entre-temps, toute une série de pièces de consommation pourraient grandement bénéficier de ce processus combiné.

À propos de Vibra Finish

Vibra Finish, situé à Mississauga, Ontario, Canada, offre une gamme complète de services et d'équipements de finition vibratoire. Ses services comprennent l'ébavurage, le brunissage, le décalaminage, le vibrapeening, le polissage, le dérouillage, le nettoyage, le séchage, la protection contre la corrosion et les services de peening. Visitez le site : vibra.com pour plus d'informations.

Source : L'épluchette de grenaille

Vous pouvez aussi aimer

fr_CAFrançais du Canada
Défiler vers le haut